Dauerdüngungsversuch Dikopshof (DDV)
Dauerdüngungsversuch für Feldkulturen
Kurzfassung
Der im Jahr 1904 als klassischer Mangelversuch in Wesseling angelegte statische Dauerdüngungsversuch Dikopshof zählt heute zu den ältesten Dauerfeldversuchen der Welt. Auf der insgesamt 3,67 ha umfassenden Versuchsfläche wurden in einer jährlich rotierenden Fruchtfolge Zuckerrüben, Winterweizen, Winterroggen, Perserklee und Kartoffeln angebaut. Je Kulturart werden 24 unterschiedliche Düngungsvarianten geführt (mit und ohne Stallmist, mit und ohne Zusatzdüngung, Volldüngung, ohne N, P, K, Ca, ohne Mineraldüngung).
Bearbeiter
Dr. Hubert Hüging
Laufzeit
1904 - heute
Förderung
Professur Pflanzenbau , INRES (Institut für Nutzpflanzenwissenschaften und Ressourcenschutz), Universität Bonn
Kooperationspartner
- Universität Bonn INRES – Bodenwissenschaften
- Universität Bonn Institut für Landtechnik
- Universität Köln
- Universität Kiel
- Universität Halle
- Universität Gießen
- JKI Quedlinburg
Veröffentlichungen
Ahrends, H.E., Eugster, W., Gaiser, T., Rueda-Ayala, V., Hüging, H., Ewert, F., Siebert, S., 2018. Genetic yield gains of winter wheat in Germany over more than 100 years (1895–2007) under contrasting fertilizer applications. Environ. Res. Lett. 13, 104003. https://doi.org/10.1088/1748-9326/aade12
Bauke, S.L., Landl, M., Koch, M., Hofmann, D., Nagel, K.A., Siebers, N., Schnepf, A., Amelung, W., 2017. Macropore effects on phosphorus acquisition by wheat roots – a rhizotron study. Plant Soil 416, 67–82. https://doi.org/10.1007/s11104-017-3194-0
Hadir, S., Gaiser, T., Hüging, H., Athmann, M., Pfarr, D., Kemper, R., Ewert, F., Seidel, S. J. Sugar beet shoot and root phenotypic plasticity to nitrogen, phosphorus, potassium and lime omission. Agriculture 2021. 11, 21. doi: 10.3390/agriculture1101002
Herbst, M., Welp, G., Macdonald, A., Jate, M., Hädicke, A., Scherer, H., Gaiser, T., Herrmann, F., Amelung, W., Vanderborght, J., 2018. Correspondence of measured soil carbon fractions and RothC pools for equilibrium and non-equilibrium states. Geoderma 314, 37–46. https://doi.org/10.1016/J.GEODERMA.2017.10.047
Holthusen, D., Jänicke, M., Peth, S., Horn, R., 2012. Physical properties of a Luvisol for different long-term fertilization treatments: I. Mesoscale capacity and intensity parameters. J. Plant Nutr. Soil Sci. 175, 4–13. https://doi.org/10.1002/jpln.201100075
Koch, M., Guppy, C., Amelung, W., Gypser, S., Bol, R., Seidel, S., Siebers, N., 2019. Insights into 33phosphorus utilisation from Fe- and Al-hydroxides in Luvisol and Ferralsol subsoils. Soil Res. 57, 447. https://doi.org/10.1071/SR18223
Körschens, M., 1990. Dauerfeldversuche: Übersicht, Entwicklung und Ergebnisse von Feldversuchen mit mehr als 20 Jahren Versuchsdauer. Akademie der Landwirtschaftswissenschaften.
Körschens, M., 2010. Der organische Kohlenstoff im Boden (Corg) – Bedeutung, Bestimmung, Bewertung Soil organic carbon (Corg) – importance, determination, evaluation. Arch. Agron. Soil Sci. 56, 375–392. https://doi.org/10.1080/03650340903410246
Kumar, A., Shahbaz, M., Koirala, M., Blagodatskaya, E., Seidel, S.J., Kuzyakov, Y., Pausch, J., 2019. Root trait plasticity and plant nutrient acquisition in phosphorus limited soil. J. Plant Nutr. Soil Sci. https://doi.org/10.1002/jpln.201900322
Mertens,M.; F., Pätzold, S., Welp, G., 2008. Spatial heterogeneity of soil properties and its mapping with apparent electrical conductivity. J. Plant Nutr. Soil Sci. 171, 146–154. https://doi.org/10.1002/jpln.200625130
Patzold, S., Mertens, F.M., Bornemann, L., Koleczek, B., Franke, J., Feilhauer, H., Welp, G., 2008. Soil heterogeneity at the field scale: a challenge for precision crop protection. Precis. Agric. 9, 367–390. https://doi.org/10.1007/s11119-008-9077-x
Rezaei, E.E., Siebert, S., Hüging, H., Ewert, F., 2018. Climate change effect on wheat phenology depends on cultivar change. Sci. Rep. 8, 4891. https://doi.org/10.1038/s41598-018-23101-2
Rueda-Ayala, V., Ahrends, H.E., Siebert, S., Gaiser, T., Hüging, H., Ewert, F., 2018. Impact of nutrient supply on the expression of genetic improvements of cereals and row crops – A case study using data from a long-term fertilization experiment in Germany. Eur. J. Agron. 96, 34–46. https://doi.org/10.1016/J.EJA.2018.03.002
Rodionov, A., Welp, G., Damerow, L., Berg, T., Amelung, W., Pätzold, S., 2015. Towards on-the-go field assessment of soil organic carbon using Vis–NIR diffuse reflectance spectroscopy: Developing and testing a novel tractor-driven measuring chamber. Soil Tillage Res. 145, 93–102. https://doi.org/10.1016/J.STILL.2014.08.007
Schellberg, J., Hüging, H., 1997. Die entwicklung der erträge von getreide, hackfrüchten und klee im dauerdüngungsversuch dikopshof von 1906 bis 1996. Arch. Agron. Soil Sci. 42, 303–318. https://doi.org/10.1080/03650349709385734
Seidel, S.J., Gaiser, T., Ahrends, H.E., Hüging, H., Siebert, S., Bauke, S.L., Gocke, M.I., Koch, M., Schweitzer, K. Schaaf, G., Ewert, F. Crop response to P fertilizer omission under a changing climate – experimental and modeling results over 115 years of a long-term fertilizer experiment. Field Crops Research. 2021 (268) 108174. doi: 10.1016/j.fcr.2021.108174
Sibbesen, E., 1986. Soil movement in long-term field experiments. Plant Soil 91, 73–85. https://doi.org/10.1007/BF02181820
Sun, Y., Druecker, H., Hartung, E., Hueging, H., Cheng, Q., Zeng, Q., Sheng, W., Lin, J., Roller, O., Paetzold, S., Schulze Lammers, P., 2011. Map-based investigation of soil physical conditions and crop yield using diverse sensor techniques. Soil Tillage Res. 112, 149–158. https://doi.org/10.1016/J.STILL.2010.12.002
Yi, J., Krusenbaum, L., Unger, P., Hüging, H., Seidel, S., Schaaf, G. and Gall J. Deep learning for non-invasive diagnosis of nutrient deficiencies in sugar beet using RGB images. Sensors. 2020, 20(20), 5893. doi:10.3390/s20205893 see video at DIGICROP2020 conference